
Computación

Estructuras de control
Sentencia DO
Ejemplos

Archivos secuenciales

- * Se usa OPEN()
- * open(22,file='nombre.txt')
- * Se cierra con un close(22)
- * Mientras está abierto puedo hacer
- * read(22,*) A,B,C
- * write(22,*) X,Y,Z

Sentencia DO

La sentencia DO se utiliza de esta manera:

Do variable=inicio, final, paso

. . .

ENDDO

Por ejemplo:

do i=1,100,1

x=x+i

enddo

Factorial

```
Program factorial
write(*,*) 'ingrese el valor de n'
read(*,*) N
F=1.
do i=1,N
   F=F*i
enddo
write(*,*) 'Para ',N, 'El factorial es=', F
end
```

Serie

C Programa para realizar el calculo de la suma de la C Serie finita $1/\mathrm{i}^2$

```
Program Suma
write(*,*) 'Cuantos términos quiero sumar?'
read(*,*) N
suma=0.
DO i=1, N
   x=i
   suma = suma + 1/x^{**}2
                            !¿otra solución?
ENDDO
write(*,*) 'La suma de la serie es =', suma
end
```

$$S_N = \sum_{i=1}^{N} 1/i^2$$

Habíamos visto que la sentencia DO podía escribirse en sentido creciente o decreciente:

Do i=1,N o Do i=N,1,-1

Probemos con la serie calcular en ambos sentidos la serie

¿Tendrán el mismo resultado? Uno esperaría que si

Pero....

Además sabemos que en el límite para N = infinito

La serie converge a:

$$S = \sum_{i=1}^{\infty} 1/i^2 = \pi^2/6 \sim 1.64493406684822643$$

Con lo cual tenemos un valor para comparar para N grandes cuál valor es más acertado

No es estrictamente el error, pero lo usamos como referencia para medir la precisión.

```
Program serie2
```

write(*,*) 'ingrese el valor de n'

read(*,*) N

resu=3.14159265358979323844**2/6

suma=0.

do i=1,N

x=float(i)

suma=suma+1/x**2

enddo

write(*,*) 'Para ',N, 'La suma con i creciente es=',suma

suma1=0.

do i=N,1,-1

x=float(i)

suma1=suma1+1/x**2

enddo

write(*,*) 'Para ',N, 'La suma con i decreciente es=',suma1

write(*,*) 'Para ',N, 'El resultado conocido es',res

write(*,*) N,suma,suma-resu,suma1,suma1-resu

end

Si corremos el programa obtenemos:

N	Resultado <i>i</i> creciendo	Error	Resultado <i>i</i> decreciendo	Error
100	1.63498402	9.95016098E-03	1.63498390	9.95028019E-03
1000	1.64393485	9.99331474E-04	1.64393449	9.99689102E-04
10,000	1.64472532	2.08854675E-04	1.64483404	1.00135803E-04
100,000	1.64472532	2.08854675E-04	1.64492404	1.01327896E-05
1,000,000	1.64472532	2.08854675E-04	1.64493299	1.19209290E-06
10,000,000	1.64472532	2.08854675E-04	1.64493394	2.38418579E-07
100,000,000	1.64472532	2.08854675E-04	1.64493406	1.19209290E-07

Noten que la serie con valores decrecientes da un mejor resultado y que es muy importante entender que podemos tener problemas con la pérdida de decimales.

¿Soluciones?